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� The number of the factors that affect the skin temperature (Tsk) in humans is tremendously large.
� This review proposes a comprehensive classification in three primary groups: environmental, individual and technical factors.
� Further research is necessary to delimit the unspecified influence of most of the factors and to improve this classification.
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Body temperature is one of the most commonly used indicators of health status in humans. Infrared ther-
mography (IRT) is a safe, non-invasive and low-cost technique that allows for the rapid and non-invasive
recording of radiating energy that is released from the body. IRT measures this radiation, directly related
to skin temperature (Tsk) and has been widely used since the early 1960s in different areas. Recent
technical advances in infrared cameras have made new human applications of IRT (beyond diagnostic
techniques) possible. This review focuses on the lack of comprehensive information about the factors
influencing the use of IRT in humans, and proposes a comprehensive classification in three primary
groups: environmental, individual and technical factors. We aim: to propose a common framework for
further investigations; to reinforce the accuracy of human IRT; to summarise and discuss the results from
the studies carried out on each factor and to identify areas requiring further research to determine their
effects on human IRT.
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1. Introduction

Infrared thermography (IRT) is a safe, non-invasive and low-
cost technique that allows for the rapid and non-invasive recording
of radiating energy that is released from the body [1–3]. IRT mea-
sures this radiation, directly related to skin temperature (Tsk). IRT
has been widely used since the early 1960s in different areas.
During the first decades after its development, research into the
use of IRT in humans was mainly focused on its applications as a
diagnostic tool. However, IRT was replaced by newer and more
accurate technologies (such as X-rays and magnetic resonance
imaging). Recent technical advances in infrared cameras have
made new human applications of IRT (beyond diagnostic tech-
niques) possible.

Since infrared cameras generate thermal images by electromag-
netic waves, we should take into account that the laws of optics are
applicable for image creation [4–6]. Likewise, as the source of
infrared radiation is heat energy, temperature and heat exchange,
Fig. 1. Representation of the classificatio
the laws of thermodynamics must be mentioned and outlined
[5,7,8].

Working with IRT requires accounting for many factors that can
influence either the evaluation or the interpretation of the thermal
images [9]. Attempting to control for such a large number of factors
may seem impossible, but simply being acquainted with these
factors is an important step in many contexts. Therefore, the
primary objective of this article is to propose a classification of
the factors that influence the application of IRT in humans.

2. Methods

Medline, Pubmed, ISI Web of Knowledge, Ingenio, Science
Direct, EBESCO, Springerlink, IEEE Xplore and Google Scholar were
used as search engines to identify studies related with infrared
thermography and all that influence factors. Due to the huge list
of keywords, there was not a unique ‘‘search sentence’’, but a
combination between the common keyword of ‘‘infrared
thermography or thermal imaging or thermology or infrared or
n of IRT-related factors in humans.
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thermometry or thermovision or IR imaging or thermal video’’ and
list of influence factors keywords, as for example ‘‘humidity’’,
‘‘alcohol’’, ‘‘injuries’’, etc.

Because of the technological improvement of IRT in the last
years, original papers published in the last 20 years were preferen-
tially considered. The inclusion criteria for study selection were (1)
the literature was written in English, (2) participants were human
beings, and (3) Skin temperature assessed by (non-contact)
infrared thermography. Potentially relevant studies were also
included by reviewing some bibliographies on infrared
thermography [10–17] and the references from the found articles,
which may have been missed in the original search.

3. Classification of influence factors

These factors will be divided into three primary groups (see
Fig. 1):

� Environmental factors: Those that are related to the place where
the evaluation is performed.
� Individual factors: Those that are related to the subject being

assessed and his/her personal characteristics that could
influence skin temperature (Tsk). These factors will be divided
into intrinsic and extrinsic factors.
� Technical factors: Factors that are linked to the equipment used

during the IRT evaluation.

3.1. Environmental factors

The first group of factors are those related to the natural char-
acteristics of the environment where the IRT evaluation is per-
formed. Environmental factors are very important and, unlike
individual factors, are more controllable.

3.1.1. Room size
The room itself is not a significantly influential factor; however,

it must meet certain basic requirements to remain a neutral
location. The cubicle should be sufficiently large to house the eval-
uation equipment and the patient and to maintain a homogeneous
temperature in the entire room. The minimal room size
recommendation is 2 � 3 m, but a larger room is desirable [3,18].
Likewise, rooms with high ceilings are not recommended because
of the difficulty of maintaining a homogenous ambient
temperature in the room.
Table 1
Experimental conditions used by several authors (based on Lahiri et al. [45]).

Authors Year Study

Chudecka and Lubkowska [41] 2015 Thermal maps of you
Akimov and Son’kin [36] 2011 Lactate threshold
Kolosovas-Machuca and Gonzalez [46] 2011 Distribution in child
Bagavathiappan et al. [32] 2010 Diabetic neuropathy
Merla et al. [47] 2010 Graded exercise in ru
Hildebrandt et al. [48] 2010 Sports medicine
Bouzida et al. [49] 2009 Thermoregulation
Savastano et al. [50] 2009 Adiposity
Zaproudina et al. [38] 2006 Low back pain
IACT [23] 2002 Guidelines
Ammer [51] 2002 Manual examination
Ring and Ammer [3] 2000 Guidelines
Gratt and Anbar [52] 1998 Facial telethermogra
Uematsu et al. [53] 1988 Thermal asymmetry
Devereaux et al. [54] 1985 Rheumatoid arthritis
Nickoloff [55] 1984 Cervical spine standa
Gershon-Cohen and Haberman [56] 1968 Thermography of sm
Brånemark et al. [57] 1967 Subjects with diabet
3.1.2. Ambient temperature
The ambient temperature is very important for most human IRT

applications [19–22]. The majority of references suggest a
temperature range of 18–25 �C (see Table 3), because the subject
is likely to shiver in lower temperatures and to sweat at higher
temperatures [3,18,23–25].

Certain authors have described Tsk variations at different ambi-
ent temperatures [26–31]. Specifically, Ring and Ammer [3]
explained that there is an ideal ambient temperature depending
on the aim of the examination. A warmer ambient temperature
(from 22 �C to 24 �C) is recommended for the evaluation of the
extremities. This is due to the influence of the sympathetic nervous
system and the tendency of extremities to have lower Tsk in low
ambient temperatures. In contrast, inflammatory lesions are easily
localised in cool conditions (below 20 �C) [32]. Garagiola and Giani
[33] described 21 �C as the perfect ambient temperature, as it is the
temperature at which the infrared emission values of the skin are
the highest.

Nevertheless, recent studies of IRT have described a strong
correlation between the skin and ambient temperature, leading
to the possibility of normalising Tsk using a regression formula
regardless of the ambient temperature [34]. These results are
similar to those that are given by the mathematical model that
was developed by Deng and Liu [35] and are consistent with the
results of the experiment of Pascoe and Fisher [29], in which the
Tsk was observed to increase proportionally with the ambient
temperature [35]. A consensus on this issue should be reached in
this regard to establish an appropriate correction formula for
standardising temperatures that are measured under extreme
environmental conditions.

Finally, another matter that is related to ambient temperature is
the acclimatisation or equilibration period (see Table 1). The time
that is required to reach an adequate stability in Tsk is set at
approximately 150 [23]. Nevertheless, different equilibration peri-
ods are used throughout the literature when using IRT, ranging
from 100 [36,37], 150 [38], 200 [39–41] to 300 [42,43] or even 600

[27]. Following 30 min of acclimatisation, Tsk can oscillate, result-
ing in thermal asymmetries between the left and the right sides of
the body [44].

Hart and Owens [58] performed an interesting investigation in
which a constant decrease in Tsk was observed over 31 min of
acclimatisation, with stabilisation in the patterns being observed
after 16 min. Nevertheless, there was a great deal of variation
among the participants, and the authors analysed only paraspinal
Experimental conditions

Ambient temperature (�C) Acclimatisation time (min)

ng 25 20
21–22 10

ren 22 ± 1 15
25 5

nners 23–24 20
21.5–22.3 20
24 ± 2 10
23.1 ± 0.2 20
23–25 15
18–23 15
24 15
18–25 10–30

phy 21–23 15
23–26 20
20.5 ± 0.5 15

rds 20 10
oking 24 15
es 18–20 15–20
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Tsk. Due to this lack of consensus, Fisher et al. [28] performed a
study demonstrating that extreme environmental conditions can
significantly affect Tsk, with 15 min of acclimatisation being insuf-
ficient, as the majority of references suggest. Despite these find-
ings, Roy and his team [59] recommend acclimatisation for a
minimum 8-min period, followed by an 8-min maximum recording
period.

A recent study by Bouzas Marins and collaborators [60] has
directly analysed the optimal acclimatisation time for IRT evalua-
tion in humans. They concluded that the optimal period is variable
in young men and women, but the minimum acclimatisation per-
iod must be 10 min.
3.1.3. Relative humidity
The effects of Relative Humidity (RH) on skin have been pre-

viously described [61]. Although RH is commonly reported in stud-
ies of IRT in humans, authors have rarely provided a justification
for controlling for this parameter. IACT recommends controlling
humidity [23], and Amalu et al. [62], specified that RH should be
controlled to prevent shivering or perspiring; however, neither of
these studies specified a range. In the literature, the majority of
studies have been performed between 40% and 70% RH
[38,39,47,53,63–66].

RH can influence IRT evaluation in two ways: first, the particles
of steam have a (minimal) potential to emit infrared emissions
[23]; secondly, there is a direct effect of relative humidity on Tsk.

Authors such as Pascoe and Fisher [29] described a very strong
relationship between the ambient temperature and RH, and Deng
and Liu [35] explained it using mathematical modelling. Atmaca
and Yigit [67] investigated RH’s effects on skin temperature and
demonstrated that RH did not significantly influence skin tempera-
ture if the ambient temperature was maintained within an accept-
able range of thermal comfort. Likewise, the results of Gómez
Carmona in Spain indicated a poor correlation [34]. Further inves-
tigations into the isolated effect of humidity on Tsk should be per-
formed to define a definite range and to describe the specific skin
responses to different relative humidity levels.
3.1.4. Atmospheric pressure
Although it is related to ambient temperature and relative

humidity, atmospheric pressure is often ignored in the majority
of references. Gómez Carmona [34] examined the correlation
between these three factors and Tsk (as measured with IRT),
identifying ambient temperature as the most significant factor
(r = 0.96) and humidity as a less significant factor (r = 0.05).
Surprisingly, the authors observed a significant influence of atmo-
spheric pressure on Tsk (r = 0.54) in the 730 IRT images that were
analysed. Further investigation is required to identify the ideal
range of atmospheric pressure under which to evaluate humans
using IRT.
3.1.5. Source radiation
In addition to the room size requirements, several guidelines

have noted the importance of isolating the room from any source
of infrared radiation [23]. As potential sources of radiation, we
can mention: incident lightning, existence of windows (blinded
or not), airflow (since it is recommended to have an air control sys-
tem), heating ducts, water pipes, walls thermal reflectance and
room insulation. It is even suggested that the data collection room
be carpeted or contain a well-insulated area rug. Providing a back-
ground of non-reflective materials is also very important to avoid
any reflection source [48].
3.2. Individual factors

As we described in the preceding section, it is possible to con-
trol environmental factors if a standardised protocol is followed.
Nevertheless, the number of factors concerning the individual is
so large, and the factors themselves are so complex, that attempt-
ing to control them all is currently impossible. We have no doubt,
however, that further investigations will eventually make control-
ling these factors feasible. For now, it is necessary to list the impor-
tant factors appears in order to take them into account.

We will establish a division within this group: first, we propose
factors that are referred to as ‘‘intrinsic’’ factors, which encompass
the nature or long-term state of the individual; we will also con-
sider ‘‘extrinsic’’ factors, which are temporal and external and
which are normally related to the personal habits or the daily
activity of the subjects.

When evaluating an individual using IRT, we strongly recom-
mend that all of the factors that are listed below be noted. Some
of these factors are obvious, such as gender, skin humidity or hair
density. However, the majority are cryptic and can influence Tsk
and thus the utility of IRT. One of the primary aims of this classifi-
cation is to make thermographic professionals aware of the impor-
tance of constructing their own questionnaire to take into account
all possible factors, even those that may have been forgotten here.
The acclimatisation period may provide the perfect moment to sur-
vey the subject.

3.2.1. Intrinsic factors
Intrinsic factors are the basic characteristics of the subject and

are primarily related to biological and anatomical parameters.
The available literature on this topic is limited, and more thorough
investigations are recommended to determine the influence of
these factors on Tsk [68].

3.2.1.1. Sex. Sex may influence the Tsk pattern [69]. Higher
tympanic temperatures were demonstrated for women [70], and
a higher upper body Tsk was also reported for women [41,71]. In
addition, intestinal, rectal, pectoral and hand temperatures were
higher for females [72]. However, the reasons for these thermal
differences between men and women are unclear [73]. Three
primary reasons could be responsible for the observed gender
differences in Tsk: the menstrual cycle, subcutaneous fat and the
metabolic rate.

Many studies have examined the influence of the menstrual
cycle on body temperature [73–76], but fewer have analysed the
influence of these factors on Tsk [77], and even fewer have used
thermography. The differences between the luteal (warmer tem-
peratures) and follicular phase (colder temperatures) in women
relative to men is well established [73] (see Fig. 2). Nevertheless,
no differences were observed in vascular or autonomic nervous
system reactivity during the menstrual cycle [78]. Following
menopause, the thermoregulatory control of the skin’s blood flow
may be reduced [79].

Much has also been published regarding the relationship of sub-
cutaneous fat and the Tsk differences between men and women.
Hardy and Du Bois [69] stated that women have a ‘‘thicker layer
of insulation against cold’’ and asserted that women have a physio-
logical advantage compared to men. This conclusion was based on
females’ better adaptation to warmer environments, larger thermal
comfort zone and higher sweating thresholds. In contrast, a study
by Karki et al. [80] describes thermal gender differences following
a knee washout as due to the tendency for women to have higher
fat percentages, thus being more insulated and able to maintain
warmer temperatures following cold stimulation. Chudecka et al.
[81] found a negative correlation between BMI and Tsk in several
body areas (abdominal, hand and thigh areas) in obese women,



Fig. 2. Tendencies in rectal temperatures between women in the luteal and follicular phases and men (adapted from Baker et al. [73]).

Fig. 3. Evolution of human tympanic temperature (adapted from Chamberlain et al. [70]).
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but also in normal-weight young women and men (chest, upper
back, abdomen, lower back) [41].

Recently, Fournet et al. [82,83] described Tsk differences only in
the thigh between males and females due to local body fat (up to
2 �C colder in women before exercise). The authors concluded that
the lower overall mean Tsk values of females were not due to sub-
cutaneous fat but to the metabolic rate. More locally, Christensen
and his team [84] analysed gender differences in facial skin
temperature, finding a higher facial Tsk in males, and identified
blood circulation and metabolic rate as the main reason for this
difference.

Therefore, the metabolic rate also plays an important role in
explaining gender differences in Tsk. This effect has been described
by several authors [69,85,86], but none of these studies used IRT to
measure Tsk, and the studies were generally conducted under
extreme conditions. In addition to these three factors, other studies
using IRT, such as one conducted by Haas et al. [87], have demon-
strated that males exhibit a more rapid rewarming period in local
(hand) thermal regulation following cold stimulation. This effect
may be due to a theoretically more prevalent vasodilatation reflex
in men.

In conclusion, it appears that gender may influence the results
of IRT in humans. Despite contradictory results, such as
Zaproudina’s [88], that indicated non-significant gender-related
differences in Tsk, more research into this topic, using IRT as a tool
for Tsk assessment, is necessary.

3.2.1.2. Age. It appears clear that temperature and age are
related; however, it is unknown how strong this relationship is
and the manner in which Tsk is affected by age. Several
references were found for this topic that provide different
perspectives.
One of the most interesting and graphic descriptions of the evo-
lution of temperature over time is a study that was conducted by
Chamberlain et al. [70]. These authors demonstrated, using a
sample of 2447 subjects of different age groups, how tympanic
temperatures decrease in the elderly, with a very large decrease
being observed between birth and 15 years of age (see Fig. 3).
Niu et al. [89] described a slightly lower Tsk in elderly than in
young subjects in a normative IRT study of subjects in Taiwan.

Decreases in temperature with age may be related to a lower
metabolic rate and to a decrease in heat dissipation abilities [90].
Symonds and collaborators [91] showed age-related changes in
Tsk within the supraclavicular region that were related to brown
fat in healthy children. An age-related impairment in vasoconstric-
tion and vasodilation has been documented, as has a reduction in
the activity of skin sympathetic nerves [92,93]. Weinert [94] also
described the manner in which the circadian rhythm changes with
age.

Tsk has been studied in several age groups, including neonates.
IRT appears to be a promising tool for assessing neonatal control of
normal Tsk and adaptation to the new environmental conditions
following birth [95–98]. A recent study of a sample of Mexican
children indicates decreased Tsk variability at young ages [46].
However, it appears that a long period of Tsk stability begins fol-
lowing puberty, with no significant changes until an advanced
age. Therefore, Zaproudina [88] did not find age to be a factor in
their studies of subjects who were between 18 and 28 years of age.

Two investigations of IRT comparing young (approximately
23 years of age) and elderly (over 60 years of age) individuals have
described important age differences (up to 1 �C) in the
temperatures of the hands, feet [99] and limbs [64], with lower
temperatures always being reported in the elderly group. Ferreira
et al. [64] observed less rapid heat dissipation in the limbs in the
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elderly following exercise; in contrast, Rasmussen and Mercer [99]
described a slower rewarming process in elderly individuals after
local cooling of the hands and feet.

In summary, Tsk is slightly lower in elderly subjects, particu-
larly in distal body areas [53,64,89,100]. However, this is certainly
an important area of research that needs more data [81,101].

3.2.1.3. Anthropometry. The problem created by a classification of
anatomical parameters is the strong relation between these
parameters. Here, we will discuss factors related to individual
anatomy, dividing these factors into two groups: factors that con-
cern weight and those that are related to the subject’s height.
Clearly, the correlations between these and the above factors, such
as gender, are strong; however, our aim is to evaluate the indepen-
dent influences of these anatomical factors.

3.2.1.3.1. Height. Little has been written on the influence of human
height on Tsk. Havenith [86] explained the role of human surface
area on body temperature in a review: ‘‘Heat loss is proportional
to the gradient between skin and environment, [. . .] and to the surface
area available for heat exchange [. . .] and thus a high body surface-to-
mass ratio would provide a high heat loss surface area relative to the
heat production volume. In effect, this implies that smaller people (i.e.,
females) should be at an advantage in the heat over bigger people
(males)’’. However, no study correlated height in cm (regardless
of gender) with the Tsk pattern or analysed this relationship more
deeply.

3.2.1.3.2. Weight. Weight is directly related to height and to other
parameters, such as body mass index (BMI). Therefore, certain con-
clusions regarding weight may be related to other factors, such as
gender or age. However, the most significant factor related to
weight may be subcutaneous fat. The thermal insulating property
of adipose tissue has been considered one of the most important
influences on individual thermal patterns [102].

LeBlanc [103] described that variations in Tsk between different
individuals may be due to differences in fat thickness. In an inter-
esting study that used IRT and thermistors, Livingston et al. [27]
observed lower Tsk in areas with greater skinfold thicknesses.
Furthermore, these authors reported larger Tsk variations among
subjects with more body fat at cooler ambient temperatures
(18 �C); these variations become lower as the ambient temperature
increased (i.e., between 23 �C and 28 �C).

Savastano et al. [50] reported the thermal pattern characteris-
tics of obese subjects under thermoneutral conditions using
thermography. These authors explained these results by hypothe-
sising the existence of a thermoregulatory compensation that
relates reduced heat loss to high abdominal fat, an effect that
would be accompanied by augmented heat dissipation from the
Fig. 4. Smoothed tendencies of circadian rhythm in rectal temperature (Tre) and skin tem
(Tprox), including the forehead, stomach, infraclavicular region, and thigh (adapted from
hands. Karki et al. [80] suggested that lower temperatures of the
knees in women may be due to higher fat percentages, and
Chudecka and Lubkowska [41] showed a negative correlation
between BMI, percentage of fat (PBF) and Tsk in chest, upper back,
abdomen, lower back (both in women and men). In contrast,
Fournet et al. [83] examined Tsk in the cold prior to and during
exercise, identifying an inverse relation between Tsk and skinfold
thickness on the anterior torso, but not on sites on the back.
These authors were not able to detect any correlation between
body temperature and the sum of all of the thicknesses of the
skinfolds that were measured.

Therefore, an inverse relation has been demonstrated between
body fat and Tsk, but only in certain body areas. Further inves-
tigations are required to increase our knowledge of the thermal
pattern of other body areas.
3.2.1.4. Circadian rhythm. The circadian rhythm and its influence on
body temperature has been widely researched and described
[70,104,105]. Binder et al. [106] and Salisbury et al. [107] both
demonstrated higher Tsk in diurnal assessments when using IRT.
On the other hand, Bianchi et al. [105], divided their sample into
two groups: those who reached the highest Tsk during the morn-
ing, and those who reached peak Tsk in the evening.
Nevertheless, the peak in most of the ROI analysed by Bianchi
and collaborators [105] were during the evening (approximately
18 pm). Ring contributed as well, highlighting that the more stable
time for assessing Tsk is before 12 pm (acrophase) in subjects from
the UK [108].

A distinction must be made between research performed on the
energy dissipation of the body and Tsk. The body’s thermoreg-
ulation functions as a gradient between the core temperature
and Tsk, allowing for heat to be exchanged with the environment
by means of convection and radiation [109]. Therefore, the current
charts that describe the evolution of rectal, gut or axillary tempera-
tures (core temperatures) [110] should be not taken as representa-
tive of what occurs at the level of the skin.

The most interesting findings regarding the circadian rhythm’s
effect on Tsk were performed by Krauchi and Wirz-Justice [111],
who described different Tsk values depending on the area of the
body being examined. Proximal Tsk (i.e., the infraclavicular region,
the thigh, and the forehead) followed the same circadian rhythm as
did the rectal temperature (see Fig. 4). In contrast, distal Tsk (i.e.,
the hands and the feet) measurements exhibited the opposite pat-
tern [111]. There is no doubt that daily activity directly influences
Tsk variations [112]. Nevertheless, further studies with more
specific data regarding the daily evolution of Tsk in different body
areas will aid in the better understanding of these daily variations.
perature in distal regions (Tdist), including the hand and foot, and proximal regions
Krauchi et al. [111] and Reilly and Waterhouse [113]).
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Moreover, several authors have examined the best time at
which to engage in physical activity, considering the daily skin
and body temperatures [114,115]. The majority of these studies
agree that improved performances are reached during the evening
due to the body’s better ability to remove heat loads [116–118].

3.2.1.5. Hair density. When one sees a human thermal image for the
first time, one is surprised at the distribution of colours that cover
the skin, the background darkness, and the cold temperatures of
certain areas, such as the hands or the head. Lower temperature
in hair areas is linked to hair emissivity. However, there are few
references regarding the potential influence of hair density or
length on other body areas.

Barnes [119] described hair as an avascular substance that
appears cold on a thermogram, being in thermal equilibrium with
the environment. Ng (2009) spoke of the factors that influence skin
emissivity, mentioning hair. Uematsu et al. [53] indicated the
unpredictability of Tsk on hair-covered areas, and Togawa and
Saito [120] described lower values of temperature on body areas
with hair. Surprisingly, no guidelines, protocols or studies have
analysed differences in Tsk between hair-covered and hairless sur-
faces. Only Merla et al. [47] and Abate et al. [40] mentioned that
study participants were asked to remove their body hair 5–6 days
prior to the evaluation in order to obtain the most accurate thermal
readings.

Most references regarding the influence of hair have examined
animals [121–123]. Clearly, the presence of hair on the human
body is not as extensive as in other mammals, but it is interesting
to note the potential influence of hair in situations where there is
hair on important areas of the skin.

3.2.1.6. Skin emissivity. Skin emissivity is a topic of current study.
Since Hardy and Muschenheim [124] wrote the first article on this
subject in 1934, many investigations have reported different val-
ues of this quantity. However, despite these differences, it is cer-
tain that human skin emissivity is very high and constant, nearly
like a black body.

Hardy wrote a number of studies in the 1930s that analysed
skin emissivity. These studies essentially concluded that human
skin emissivity was that of a black body and independent of
wavelength [124,125]. Some years later, Barnes [119] indicated
that human skin emissivity was 0.99. Steketee [126] published
an interesting study that reported that emissivity is nearly con-
stant, with a value of 0.98 ± 0.01. This study also reported that
the emissivity of black, white or burnt skin is the same, indepen-
dent of the nature of the experiments (in vivo or in vitro) and falls
within a range of wavelengths (between 2 and 14 lm).

Togawa [127] described very interesting results in his study of
skin emissivity, analysing the factors and reasons why a range of
results from 0.94 until 0.99 have been obtained for this measure.
He suggested that results such as those from Steketee [126] were
incorrect in that they underestimated Tsk due to of a temperature
gradient on the skin, setting the human Tsk at 0.97.

Of the most recent published works, the one written by
Sanchez-Marin et al. [128] is the most relevant. In this study, the
authors investigated established a skin emissivity of 0.996 at a
wavelength of 10.6 lm.

Despite the time that has passed since the first study by Hardy,
a consensus has not been reached regarding the correct value of
skin emissivity. Skin colour influences emissivity; however, the dif-
ferences are thought to be very small [126]. Although further
research would be very interesting, it is clear that human skin
emissivity ranges between 0.97 and 0.99 at wavelengths of
between 2 and 14 lm [127,128]. Therefore, most authors have
performed their investigations using 0.98 as the standard skin
emissivity value [40,84,129].
3.2.1.7. Medical history. Human skin is the natural protection of the
body, a type of biological shield that protects us against environ-
ment dangers. In an ideal world, our skin should maintain a con-
stant thermal pattern over time, with the constant aim of
keeping the body in thermal balance or ‘‘homeothermy’’.
However, continuing with the analogy of the shield, lifelong
exposure to many external factors (e.g., solar radiation or scars)
leave their marks on human skin, breaking and altering the ther-
mal pattern with permanent hot/cold spots, which could influence
the correct interpretation of a thermographic image.

Many studies have been published regarding the thermal
responses of Tsk to injuries, diseases or wounds. Surprisingly,
fewer studies have been written regarding the effects of these
sources on Tsk that remain once the condition is recovered or
healed.

Rochcongar and Schmitt [130] published an interesting work
describing the effects of different injuries on Tsk and highlighting
the potential of IRT to indicate the degree of the lesion and control
its evolution. Some years later, Ring [108] described in detail the
basic skin responses after an injury as identified by Rochcongar
and Schmitt [130]: normothermic, hyperthermic and hypothermic
patterns, i.e., increased and decreased temperatures.

In many cases, hyperthermia occurs when inflammation or any
other process that leads to higher skin blood flow is present.
Therefore, infections [131], tendinitis [132], bursitis, bone fractures
(including stress fractures) [133–135], arthritis [54,136–142], ten-
nis elbow [106], acute muscle injuries [143,144], compartment
syndrome [145], anterior cruciate ligament surgery patients
[146], other surgical applications [147], and other problems that
derive from inflammation or trauma have been previously
described. Alternatively, hypothermia can occur as a consequence
of degenerative processes [99], arterial or vein occlusion (e.g., deep
vein thrombosis) [148], nerve damage, reflex sympathetic dystro-
phy [149,150], Raynaud’s phenomenon [151–154], or the presence
of avascular tissues from wounds or burns [155–158]. Moreover,
other authors described the manner in which pain could cause
both hypothermy and hyperthermy [159]. Alterations in skin tem-
perature have also been reported due to diseases such as allergies,
brain lesions, cancer, chronic fatigue syndrome, depression, fevers,
human immunodeficiency virus (HIV) infection, insomnia, obesity,
psoriasis and thyroid dysfunction [160]. Finally, Sillero and collab-
orators [161] have published a study describing the different Tsk
responses of 202 patients admitted to the Emergency Unit at the
CEMTRO clinic in Madrid.

However, no differences have been described between the acute
and long-term effects of these factors on Tsk. Scars are a good
example of a type of skin heterogeneity that can influence Tsk,
however they are not commonly described in the literature
[119,162–165].

Our experience has shown other examples help to illustrate this
point, such as the asymmetries that we have detected following
anterior cruciate ligament injuries, where the affected areas
maintain persistent asymmetry once the injury is completely
healed, even years later (see Fig. 5). The literature also describes
the effects of varicose or superficial veins on long-term alterations
in Tsk [32,166] (see Fig. 6). It has also been documented that tat-
toos could lead to a certain degree of thermal pattern alterations
[167].

Additionally, Chudecka [168] has recently noted the special
characteristics of Tsk in individuals with eating disorders, such as
anorexia or bulimia. The author highlighted that one of the symp-
toms of these disorders could be identified by a state of hypother-
mia due to starvation, dehydration, slower metabolic processes,
hormonal imbalance (decrease of thyroid hormones), disorders of
the circulatory system and a significant loss of body fat and muscle
[169–173].



Fig. 5. Subjects 9 months (left), 4 years (centre) and 6 months (right) after anterior cruciate ligament surgery on the right knee.

Fig. 6. IRT images showing examples of varicose and superficial veins.
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We therefore strongly suggest performing a medical anamnesis
prior to a thermographic examination. Information regarding prior
injuries, diseases and operations could provide essential informa-
tion for understanding potential chronic thermal asymmetries that
may influence the interpretation of the IRT images.
3.2.1.8. Metabolic rate. Jiang et al. [174] briefly noted that Tsk is the
result of the heat balance that is generated by metabolism and heat
loss through thermal conduction, forced and natural convection,
perspiration and exhalation. Therefore, the influence of metabo-
lism on Tsk is very important but difficult to study [33,35].

The correlation between metabolism and Tsk allowed IRT to be
considered a valuable and accurate tool for quantitating heat loss
and energy expenditure in humans [91,175,176]. Indeed, one of
the most interesting applications of IRT in medicine (e.g., breast
cancer) is based on the detection of the higher metabolic activity
of carcinomas [2,45,177–180]. However, breast cancer is not the
only application where IRT can be used to examine metabolism.
Diabetes is a metabolic disease where patients have abnormal tem-
perature patterns in the feet and hands due to the hyperglycaemia
that is caused by insulin deficiency [57]. Furthermore, recent stud-
ies have stated that IRT is an accurate indicator for diabetes, even
better than blood sugar measurements [45,181,182]. Chudecka
[168] described hypothermic skin patterns in individuals with
eating disorders, due to slower metabolic processes, among many
other reasons.

Finally, other studies have measured metabolic activation using
IRT. Interesting research is being conducted into the relationship
between Brown Adipose Tissue (BAT) and thermogenesis [183].
Some researchers have used IRT in order to measure and locate
BAT in the supraclavicular region [91,184], which is related in
adults to a lower body weight and fasting glucose level [185].
Additionally, there is a relationship between physical activity and
metabolic increases. Physical activity generates a higher body tem-
perature, resulting in heat dissipation through the skin [186,187].
Therefore, IRT evaluation following any type of physical activity
may be an effective indicator of metabolic activation. Knab et al.
[188] demonstrated increased energy expenditure even 14 h
following exercise, and Fernández-Cuevas [189] found through
IRT significant warmer Tsk in some body areas 8 h after moderate
exercise, including endurance, strength and speed training.
3.2.1.9. Skin blood flow. Skin blood flow has been described as an
important factor in heat exchange, along with other factors, includ-
ing metabolic rate and subcutaneous adipose tissue [35,190].
Consequently, the relation between Tsk and skin blood flow is
sufficiently relevant to consider it as one of the primary factors
influencing IRT.
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Skin blood flow is related to the autonomic nervous system,
which controls vasoconstriction and vasodilatation of the capillary
vessels to maintain homeostasis [79,191]. Therefore, other factors
(i.e., sweating or physical activity) may be directly correlated with
skin blood flow.

However, skin blood differs between subjects and may lead to
variable Tsk values [79,88,192]. Certain studies have reported
opposite reactions in the same conditions, such as the cold test
or physical activity [47,193]. These differences may be explained
by physical fitness [194], genetic factors [195] or ethnic considera-
tions [196]. A deeper knowledge of the relationship between skin
blood flow and Tsk through the use of IRT is required to understand
the different influences of skin vascularity and Tsk.
3.2.1.10. Genetics. Human evolution is marked by genetic adapta-
tions to the environment. Thirty-one different climatic zones have
been described worldwide, and human beings have physiological
and morphological differences in response to their environmental
conditions. Lambert and collaborators [196] indicated that pheno-
typic differences are very clear, but genotypic differences are less
easy to discern, despite the discovery of 50 genes affected by heat
and 20 by cold.

There are obvious Tsk differences between subjects, due to all
the factors that we describe in this review. Nevertheless, we should
not forget the theoretical influence of genetics on normal and dis-
ordered Tsk and thermal profiles. Although genetic factors are a
recurrent topic in research studies, little research has been pub-
lished describing the genetic influence in Tsk.

However, some authors have noted the importance of
investigating the thermal profiles of different population groups
or specialisation groups. Bouzas and collaborators [101] published
the thermal profile of Brazilian adults and football players,
Chudecka et al. [81] described the body surface temperature of
obese women, and more recently a general thermal map for young
women and men [41]. Other authors focused on the thermal
description of some body areas: Hauvik and Mercer [197]
described the thermal distribution patterns of the skin surface in
the head in bald-headed male subjects; and Gatt et al. [198] pub-
lished hand and foot Tsk distribution patterns. These are just some
recent examples of research studies that have attempted to pro-
vide more Tsk data in different population groups. Further research
Table 2
Skin thermal variations in the considered regions of interest across em

Em

Stress Fear Embarra-
ssment Startle Sexual

arousal

Regions
Nose
Cheeks
Periorbital
Supraorbital
Forehead
Maxillary
Neck carotid
Nose
Tail
Fingers/palm
Lips/mouth

↓ ↓ ↑
↓
↑ ↑
↑

↓↑ ↓ ↑
↓ ↓ ↓

↑
↓

↓
↓

↑ ↑
will doubtless drive us logically from general to individual data;
genetic research therefore seems to be necessary for understand-
ing differences in Tsk.
3.2.1.11. Emotions. Emotions are another surprising factor that
modify Tsk. Although it sounds strange, skin temperature (particu-
larly in the face) varies with mood. Some research studies have
been done in this vein, discovering an interesting capacity to iden-
tify human feelings.

Initially, some researchers analysed sexual arousal and its influ-
ence on skin temperature [199–203]. Some years after, it was
described how unpleasant and pleasant states could be identified
by IRT [204–206]. Most recently, Legrand and collaborators [207]
have showed a negative relation between cheek temperature and
affective state – pleasure/displeasure – during exercise. Other
authors showed a significant temperature change on nose Tsk
under red illumination [208]. Jenkins and collaborators [209] anal-
ysed the potential of IRT by measuring cognitive work and affective
state changes in humans during user-product interactions. They
measured the forehead Tsk and found strong positive correlations
between IRT, Electroencephalogram (EEG) reading and Affective
Self Report (ASR) scores.

In recent years, the research group of Arcangelo Merla has pub-
lished a significant number of papers describing the complexity of
emotions and how they influence the skin temperature, mainly the
facial thermal response. Among many different emotions, they
have described mother and child synchrony [210,211]; startle
[212]; guilt [213]; fear [214,215]; stress [216–218]; and other
emotions [219]. Ioannou and his team [220] have published an
impressive review describing the thermal response in different
ROI when experiencing different emotions (see Table 2). We can
conclude that emotional status can influence thermal assessments.
Even if the face is the most critical ROI for thermal signalling of
emotions, we suggest taking into account the emotional status of
the assessed subjects.
3.2.2. Extrinsic factors
According to the proposed classification, extrinsic factors are

considered to be those that affect human skin temperatures for a
certain period of time, with the majority of these being external
factors. Considering the large list of external factors, they have
otions (based and adapted from Ioannou et al. [220]).

otions

 Anxiety Joy Pain Guilt
Displea-

sure 
(exercise)

↓ ↓
↑

↑
↑
↑ ↓ ↑

↓ ↓

↓
↓
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been subdivided according to their primary characteristics: (i) fac-
tors that may be intake-related but affect the Tsk; (ii) those that
may be applied directly to the skin; (iii) those factors that are
related to skin therapies; or (iv) those factors that concern physical
activity.

3.2.2.1. Intake factors. In this section, we aim to describe the factors
that affect Tsk or emissivity due to the consumption or intake of
medications, drinks or other products that could temporarily influ-
ence Tsk.
3.2.2.1.1. Drug treatment or medicaments. It is often recommended
that the use of medications be avoided prior to a thermographic
assessment [3,23,88]. Certain general indications have been
described regarding the nature of the drug treatments to avoid,
but there is no specific list of medicaments that affect Tsk.

It would appear simple to make a list of all of the medications
that influence thermoregulation. However, based on the lack of
such a classification in the literature, it appears that the construc-
tion of such a list is not as simple a matter as it may appear. Drug
treatments can affect Tsk, but to date, the primary use of IRT is to
evaluate the therapeutic effects of treatments [221]. Based on the
research that has been performed on IRT, we propose a treatment
list that consists of five primary groups: analgesics, anti-in-
flammatories, vasoactives, hormonal medications (contraceptives),
prophylactics and anaesthetics.

The first of the effects of medical treatments on Tsk was per-
formed by Ring et al. [37] and Collins et al. [139], who conducted
several studies to analyse the effects of different rheumatoid
arthritis and gout treatments on IRT. These authors described the
manner in which Tsk changed under the effects of non-steroidal
anti-inflammatory drugs (NSAID), intra-articular anti-in-
flammatory steroids and analgesics over several days of treatment.
IRT was reported to be a useful tool for the clinical testing of these
drugs, using temperature alterations in the affected joints as an
objective marker [165].

Some years later, it was described that paracetamol augments
Tsk in small joints, whereas a week was required for the same
effect with anti-inflammatory treatment [222]. More studies were
subsequently published on NSAIDs and thermography [223].
Indeed, Giani et al. [224] demonstrated the usefulness of IRT as a
tool to evaluate the use of NSAIDs in sport injuries.

Other treatment groups are related to hormones. The effects of
this group of drugs are quite complex, directly affecting metabo-
lism and thus thermoregulation. Uematsu et al. [225] described
the flare effect on Tsk following an intradermal injection of
histamine.

Contraceptives are the most frequently used hormonal drugs
and can significantly alter daily temperatures, shifting the entire
curve upward as much as 0.6 �C [73]. Other compounds, such as
Fig. 7. Effects of alcohol consumption on Tsk between non-dr
melatonin, have been demonstrated to affect body temperature
[226].

In a chapter on prophylactic treatments, we found an example
reported by Henahan [227], who explained how Doctor Jan Frens
‘‘noted that many drugs act on the hypothalamus and other brain cen-
tres involved in controlling the body’s thermoregulatory system’’. It
was described how methysergide maleate, which is used as a
migraine prophylactic, caused a decrease of in Tsk of 10 �C due to
its role as a serotonin antagonist, which regulates body heat loss.

Vasoactive and anti-inflammatory treatments are frequently
noted to influence Tsk [23,88,165]. Caramaschi et al. [228]
described the use of IRT to describe the effects of an injection of
the anti-inflammatory Iloprost on Tsk. Other works that evaluated
the effects of drugs that affect the cardiovascular system were
mentioned [229–231]. Recently, Bruning and collaborators [232]
analysed the effect of antithrombotic therapy with oral aspirin or
clopidogrel in Tsk, including 120 min of exercise on a cycle
ergometer. The results showed an increased core temperature
and Tsk, both during rest and exercise.

However, a detailed investigation should be performed to
define the effects of all of these medications on Tsk. Special atten-
tion should be given to medications that are frequently used (i.e.,
paracetamol, aspirin, and contraceptives) and that could affect
the interpretation of a thermogram.

3.2.2.1.2. Alcohol. Alcohol intake has been associated with an
increase in Tsk due to skin vasodilatation and the consequent aug-
mentation of skin blood flow [233]. Ewing et al. [234] were the first
to illustrate this fact using IRT; this study, which described several
potentially influential factors, also found that alcohol consumption
resulted in ‘‘an overall increased temperature and a more diffuse
thermal pattern than normal’’ on the breast.

Some years later, another study used IRT to assess the effects of
25 cc of 40% whisky on hand temperature, showing an increase in
Tsk over the 9 min following consumption, an effect that was
stronger in the subjects who were not used to drinking alcohol
[235] (see Fig. 7). However, the same effects were not observed if
the alcohol was consumed with a meal.

Wolf et al. [236] noted in a review that since ancient times, ‘‘it
had been believed that alcohol dilates blood vessels, causes flushing,
and raises skin temperature’’. More recently, however, new inves-
tigations have demonstrated that the matter is not as simple as
this, and controversy exists due to the obtaining of contradictory
results despite the use of similar methods.

Two more recent studies examined the response of the hands,
knees and face after drinking alcohol, revealing different effects
on Tsk, depending on the body area. The hands had a maximal
increase of 1 �C after 150; meanwhile, the temperatures of the
knees increased by only 0.3 �C or even decreased by 0.2 �C
[237,238].
inkers and drinkers (adapted from Mannara et al. [235]).
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However, other factors appear to influence the effect of alcohol
on Tsk, such as an empty stomach [235], the quantity of the alcohol
[239], race [240], the habit of drinking alcohol [235], and even the
ambient temperature. It appears that the effects of alcohol only
become more apparent between temperatures of 20 �C and 35 �C.
In colder or hotter environments, the thermoregulatory system is
stronger than the effects of the ethanol [233,241].

As Wolf et al. [236] noted, the primary influence of alcohol on
Tsk is vasodilatation and the consequent temperature aug-
mentation. Nevertheless, more research should be performed into
the responses of Tsk to alcohol not only on the joints and the face
but also over the entire body. Likewise, the duration of this influ-
ence should be tested.
3.2.2.1.3. Tobacco. In contrast with the majority of factors that
influence Tsk, the effects of smoking have been widely examined.
The vasoconstrictive action of nicotine on the skin, and therefore
the reduction in temperature, is well known [242]. Nicotine affects
both heart rate and blood pressure, but in opposite directions
[242,243].

The great interest on the effects of smoking on health encour-
aged many studies in this field during the 1960s and 1970s. IRT
was used to analyse the thermal effects of smoking, primarily on
the hands and the feet. The results demonstrated a decrease in
temperature of between 0.5 �C and 3.0 �C in the extremities, reach-
ing the lowest point between 15 and 30 min after smoking
[56,234,244]. Ewing et al. [234] described a decrease of 3 �C at
the breast during smoking, and Gershon-Cohen et al. [56,244]
noted that the vasoconstrictive effects remained for 90 min after
smoking. The only dissenters regarding this consensus were
Usuki et al. [245], who showed an increase in Tsk following con-
sumption of nicotine chewing gum. Recently, Christensen and col-
laborators [84] reported no significant difference between smokers
and non-smokers in their study of changes in facial temperature
with IRT. Nevertheless, they suggested that these findings could
be due to the low number of smokers in the study and the number
of cigarettes smoked per week (only 3 smokers who consumed
fewer than 80 cigarettes per week).

It seems clear that smoking affects IRT (i.e., by reducing Tsk);
nevertheless, more information regarding the response of other
body areas (apart from the hands and the feet) would shed light
on the whole-body response to nicotine.
3.2.2.1.4. Stimulants. Caffeine is a commonly used substance.
Therefore, knowing the effects of this stimulant, which is present
in coffee, tea and soft drinks, is important for the assessment of a
thermogram. The reported results highlight the increase in Tsk fol-
lowing the consumption of caffeine [246,247]. Accordingly,
Quinlan et al. [248] concluded that the consumption of hot drinks
with caffeine activates physiological processes that boost the
increase in Tsk. These authors described a thermal peak of 1.7 �C
15 min following the intake of caffeine, with Tsk returning to base-
line one hour following consumption [248]. Nevertheless, Koot and
Deurenberg [247] noted that the metabolic rate remained elevated
for over 3 h due to caffeine consumption, but Tsk was only elevated
for 90 min following consumption.

Surprisingly, the only study to use IRT to measure Tsk following
the drinking of tea was by Clark et al. [249]; however, the aim of
the study was to determine the effectiveness of a cup of hot tea
or an ice-cold drink as a cooling strategy, using Tsk as a readout.
Amazingly, it was the cup of hot tea. However, it would be advis-
able to perform further research regarding the effect of caffeine
and other stimulants on Tsk using IRT.
3.2.2.1.5. Food intake. Although it is well established that food
intake increases body temperature [113] the results regarding its
impact on Tsk are inconclusive [3].

Certain studies have analysed the effects of food intake on Tsk
using IRT, finding no changes [235,250,251]. Others have observed
that the timing of food intake did not alter the circadian rhythm
[19,104].

In contrast, other investigations have reported opposite conclu-
sions. First, Kelly [160] described in his review how the timing of
food intake influences metabolism, taking, for example, the case
of Ramadan, during which Muslims abstain from eating and drink-
ing between sunrise and sunset for 30 days. Food intake is related
to an increase in oxygen consumption and energy expenditure
[252], which is referred to as Diet-Induced Thermogenesis (DIT).
It is believed that DIT is caused by the triggering of intestinal, liver
and Brown Adipose Tissue (BAT) activity [253]. However, the
investigations that were performed along these lines were not able
to determine the role that the liver or BAT played, even if Tsk was
observed to rise using IRT [175,194,254]. Certain authors described
differences between the increase in metabolic rate and Tsk in the
postprandial period, reporting a rapid effect on energy consump-
tion immediately after eating [251,252]. Nonetheless, Tsk reacts
later, peaking between 60 and 90 min after eating, followed by
an initial and smooth decrease [175,252,254] (see Fig. 8). Further
studies using IRT could shed light regarding the primary body
areas that are influenced by eating and to determine whether the
quantity or quality of the food eaten has any effects on Tsk.
3.2.2.1.6. Hydration. It could be suggested that normal hydration
does not affect Tsk, because drinking does not entail digestion
and therefore is not an energy-releasing process. However, it has
been reported that sparkling water consumption in humans caused
a drop in Tsk in the hands, knees and face of up to �0.89 �C [238]
(see Fig. 9).

The aim of this study was to investigate the influence of alcohol
on Tsk; it was therefore surprising to discover a reduction in Tsk in
the control group. This effect was perhaps due to the concentration
of CO2 in the sparkling water. This was the only study to find a
relationship between hydration level and Tsk; therefore, more
studies are required if we are to understand this potential
influence.

3.2.2.2. Application factors. The second group of extrinsic factors
refers to those that are applied directly on the skin and which
affect the skin’s emissivity or blood flow. Such factors include cos-
metics, ointments, topical products and radiation.
3.2.2.2.1. Ointments and cosmetics. Scientific studies of IRT fre-
quently provide recommendations regarding the procedures that
should be followed to achieve a neutral IRT evaluation. Thus far,
ointments, creams, makeup, deodorants, antiperspirants and
oils are often cited as items to be avoided by the subject prior to
the assessment [2,3,6,9,23,28,29,45,47,101,128,227,255–260].
However, it is difficult to find specific studies that have analysed
the effect of the topical factors that Vainer [261] referred to as ‘‘un-
natural factors’’, which are often used in daily life.

We suggest differentiating these factors into the following cate-
gories: cosmetics (makeup, deodorant, antiperspirants, talc, etc.),
ointments (creams, oil, skin lotions, etc.) and medicated ointments
(analgesic, vasodilators, cold gel, spray, etc.).

An early study of the influence of ointments and cosmetics anal-
ysed the manner in which different products, such as sun cream,
talcum, Vaseline or oil, can influence skin emissivity [262].
Unfortunately, this author did not specifically describe the effects
in terms of the extent of the increase or decrease. Nevertheless,
other authors have subsequently described a direct influence of
this type of topical product on Tsk [227,261,263–265]. These prod-
ucts primarily mask the true Tsk and give the skin a different emis-
sivity. Therefore, the recorded Tsk is decreased [266].

Henahan [227] reported differences between non-medicated
and medicated ointments. Certain medicated ointments, such as
those with nicotinic acid or oestrogenic hormones, function as
vasodilators and can cause local hot spots that can persist for



Fig. 8. Effects of food intake on Tsk (adapted from Dauncey et al. [254]).

Fig. 9. Effects of sparkling water intake on Tsk of the hands (adapted from Ammer
[238]).
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24 h [264,265]. Other medicated ointments have been reported to
have the opposite effect, such as Deep Freeze Cold Gel, which was
used by Ring et al. to conclusively demonstrate a decrease in Tsk
due to, among other reasons, the evaporation of alcohol [1].
Another recent publication described a skin cooling effect of topical
Voltaren� [267].

A study reported Tsk measured using IRT following the applica-
tion of several innocuous products, such as ethylic alcohol,
Vaseline, penicillin cream, moisturising creams, baby oil, talc,
Melox, ultrasound imaging gel, sun tanning products and sun-
screen. The aim of the investigation was to enhance the contrast
between Tsk and the subcutaneous veins, and sunscreens were
determined to be the best product for decreasing Tsk in order to
improve visualisation of veins [266].

Recently, Bernard and his team [268] have published an inter-
esting work attempting to determine whether the skin emissivity
can be neglected or not in situations of topical application of sub-
stances such as ultrasound gel, ointment and disinfection. They
showed cooler thermal results on hands with those ointments,
due to a different emissivity.

Moreover, hypoallergenic massage cream has been used by sev-
eral authors to prevent creams from being a confounding factor
[269]. Therefore, the effect will be different depending on the con-
tent of the topical product used. More research is required to
establish how long the effect persists.
3.2.2.2.2. Water. Certain authors recommend that showers be
avoided for one or two hours prior to a thermographic evaluation
[2,258,270]. Again, there is a lack of references explaining the rea-
sons to avoid showers. Clearly, the application of water on the skin
depends on the manner in which it is applied (e.g., ice pack, a
sauna, cryotherapy, or hot or cold showers). Nonetheless, the
majority of these examples will be described in Section 3.2.2.3.

A recent study has examined IRT results between two hands,
applying in one of them water at body temperature (35 �C). They
found that water entails lower Tsk results, but not due to the water
temperature, but the emissivity [268]. The hydration of the skin
through a shower or a bath is expected to influence Tsk; thus, we
suggest that subjects should avoid showers or baths prior to the
thermographic evaluation.
3.2.2.2.3. Sunlight. Another factor commonly mentioned factor to
be avoided is heat radiation. A large number of studies suggest per-
forming the infrared evaluation in a standardised and air-condi-
tioned room without radiation sources, such as direct sunlight
[2,45,58,88,139,162,259,271]. The influence of sunlight is more fre-
quent and problematic for other IRT applications, such as veteri-
nary thermography, due to a greater exposure of the subjects to
sunlight and the difficulties in avoiding exposure [272].

The most interesting publication that studied this factor was
performed by Clark and his collaborators in 1977 [249]. These
authors performed an experiment to determine the effect of
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sunbathing for 20 min at a temperature of 31 �C. Using IRT, these
authors observed an augmentation of 5 �C on the side exposed to
the sun, with an accompanying reduction in the whole body Tsk
range from the normal 8–10 �C to 4–5 �C [249].
3.2.2.3. Therapies. These influences are therapies that are applied
on the skin and therefore affect the skin’s radiation and tempera-
ture. We will mention the references for the most current therapies
and methods from physiotherapy, although other lesser-known
therapies may influence Tsk as well.

Electrotherapy is a medical treatment that uses electrical
energy. In physiotherapy, the wave frequency, wavelength and
intensity of the stimulus can be modified to achieve different
objectives, e.g., pain management, improved muscle performance,
tissue repair and increased functional activity [273]. Ring and
Ammer [3] cited different authors who described the effects of
electrotherapy on Tsk. Unfortunately, these references are not
easily obtained. Nevertheless, another interesting study mentioned
the different effects of electrical and manual acupuncture, demon-
strating a localised short-term cooling effect with an increase in
sympathetic activity when using the electrical modality [274].
We have observed similar effects (unpublished observation) (see
Fig. 10).

Ultrasound is used in physiotherapy to transmit ultrasonic
waves directly to the skin. These waves are absorbed primarily
by connective tissue, i.e., ligaments, tendons and fascia [275].
Ultrasound has two principal effects: thermal, due to the absorp-
tion of ultrasonic waves, and non-thermal, based on the cav-
itational effects due to vibrations [276]. Watson [275] observed
an increase of 3 �C using IRT following a 5-min application of ultra-
sound on the hand. In another study, a similar procedure was fol-
lowed to verify the thermal recovery of muscle following warming
by 5 �C with ultrasound therapy [277]. A swift return to baseline
was reported, requiring only 18 min for recovery to the initial
temperature.
Fig. 10. Example of the effects of electrotherapy b
Heat treatment is a common therapy for injuries and diseases.
Clearly, the effect of this treatment leads to different degrees of
increase in Tsk depending on the manner in which the heat is
applied (e.g., hot packs, diathermy or infrared pads) and the dura-
tion of the treatment [278,279]. The application of heat has been
widely used and observed [280]; and recently described through
an IRT study where Visible and near infrared irradiation (VIS–
NIR) was applied, increasing the Tsk more than 3 �C but returning
the initial thermal values after 30 min in young subjects [100].

Cryotherapy is, in contrast, one of the most investigated topics
in the IRT field [80,100,193,259,281–297]. Cryotherapy is defined
as the cooling of an area with a medical aim. These goals can be
to reduce oedema, to decrease tissue metabolism or to provide
analgesia [298]. There are several cryotherapy modalities, includ-
ing whole body cryotherapy (WBC), cold-water immersion (CWI),
ice and cold packs. Each of these modalities has different effects
on Tsk [193,299].

In an interesting recent review, Costello and collaborators [193]
listed the most relevant works that used IRT to analyse the effects
of cryotherapy. Recent cryotherapy guidelines recommend reduc-
tions of Tsk between 5 and 15 �C, with 12 �C being the Tsk limit
set by experts due to the risk of injuries [300]. For all of the refer-
ences cited, nearly all modalities reached a minimum reduction of
5 �C in Tsk, and a subset of these obtained decreases of over 15 �C
[282,290,292,301–303]. A single case of cooling by WBC decreased
Tsk by less than 5 �C [283].

Greater thermal reductions with cryotherapy are achieved in
the limbs, joints, hands and feet [282,290,292,301–304].
Meanwhile, core areas (i.e., pectoral or back regions) do not
undergo decreases of more than 7 �C [285–288]. With respect to
the duration of thermal effects, the majority of studies did not
report a return to the baseline levels of temperature even
120 min following the treatment, with Tsk normally remaining
several degrees below the baseline measurement
[287,288,292,302,303]. Surprisingly, we identified certain studies
in which baseline Tsk was reached some minutes following the
efore (left) and after 100 of treatment (right).



Fig. 11. Example of the effects of effleurage massage (sport technique) before and after 100 of treatment on the posterior right thigh.
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cold test [99,282], with hyperthermia of 1 �C or even higher being
reported. Both studies analysed the extremities, such as the hands
[99] and the forearm [282]. Some research has been done to
analyse the effects of cryotherapy in women depending on age
[296]. One study used a covering of ice for only 30 s [282] and
employed a brief (2 min) cold water immersion [99]. However,
we highlight the exceptionality of these investigations and empha-
sise that the general tendency is for the Tsk to remain lower for 2 h
following cryotherapy.

Massage is traditionally used to obtain therapeutic or medical
objectives. There are many massage techniques; however, the
majority of these techniques require direct contact with the skin.
The thermal effects of this therapy have been examined using
IRT, and an increase in Tsk has been reported [269,305–311].
Effleurage massage (a sports technique) achieved the greatest aug-
mentation of Tsk (approximately 1.8 �C with 100 and 2.8 �C with 300

of massage) [307] (see Fig. 11). Generally, Tsk increases approxi-
mately 0.5 �C with a 20-min massage [269,305,306,311]. Sefton
et al. [269] analysed the thermal effect of a 20-min massage of dif-
ferent body areas, describing a general tendency of Tsk to increase
as much as approximately 0.7 �C (even in non-massaged body
areas), peaking 350 after the massage session and returning to
baseline after 600. Differences were observed between the regions,
with the hands exhibiting hypothermia and the back of the neck
remaining 0.4 �C warmer after 60 min. Moreover, it was observed
that mobilisation techniques cause non-significant Tsk increases
[308] or even slight decreases [51,309]. Holey et al. [309] per-
formed an investigation of connective tissue massage (CTM) using
two techniques, fascial and flashige massage. The authors reported
0.8 �C increments with the fascial technique and 0.1 �C decreases
with the flashige technique; these trends were maintained after
60 min. Scraping therapy is another technique which causes an
increase in Tsk. Xu et al. [312] reported an increase of 1.7 �C imme-
diately after the therapy, and areas that were 0.7 �C warmer per-
sisted for 90 min after the use of the technique. In summary,
massage therapy commonly results in increased Tsk with a rela-
tively rapid return to the thermal baseline; nevertheless, more
investigations could provide further knowledge about the thermal
response and influence the grade of the different techniques.
Other therapies are related to certain previously described
modalities, such as hydrotherapy, which is based on the use of
water for pain relief and treatment. Essentially, hydrotherapy uses
cold water, hot water, or both (a technique that is referred to as
contrast hydrotherapy). We previously mentioned the effects of
cold-water immersion (CWI) [99,302,304]. However, less has been
written with respect to hot water [313]. Ring et al. [314] described
an increase of 5 �C in Tsk on the ankles following hot water immer-
sion, and a 2.4 �C increase was observed for the knees; more than
2 h were required for the Tsk to reach baseline levels. However,
this previous study used thermistors rather than IRT. It is therefore
necessary to further investigate the thermal response of the skin
following hot water exposure, as well as the effects of other daily
previously mentioned activities, such as showering or bathing.

Acupuncture has been studied in many investigations that
used IRT to search for thermal differences in meridians and
acupuncture points [274,315–326]. We are aware of the existence
of more studies, but the majority of these are inaccessible from
western databases, as they are Asian publications. Nonetheless,
studies such as one conducted by Lo [327] described the thermal
effects of acupuncture therapies, with Tsk decreases of up to
1.48 �C and augmentations of up to 0.69 �C. Ipólito and Ferreira
[326] reported a significant reduction in leg Tsk by approximately
1.1 �C in all volunteers after 15 min of therapy. In the majority of
these cases, the acupuncture treatment was performed in body
areas far from the painful region that exhibited increased tempera-
tures. IRT could certainly aid in the better understanding of the
thermal effects of this traditional Chinese technique.

As we have seen, the influence of the above therapies on Tsk is
clear; therefore, these factors should be avoided or reported prior
to a thermographic assessment [2,23,45,258]. Ring and Ammer
[3] described thermal effects between 4 and 6 h following therapy.
Nevertheless, this long-term effect has not been described in any
study that was present in the database used in this review.

3.2.2.4. Physical activity. In this group, we will include factors that
are related to physical activity and exercise, which are likely to be
some of the primary sources of homeostatic disturbance in the
human body [64,65,162,328,329]. We have also included other



Table 3
Skin temperature asymmetries results from different studies of IRT.

Year Author N Subjects ROI Asymmetries

1963 Barnes [119] 100 Patients Breast >1 �C
1984 Feldman and

Nickoloff [55]
100 Healthy Normative

data
>1 �C

1985 Uematsu [379] 32 Healthy Knee 0.24 �C
1988 Uematsu et al.

[53]
90 Healthy Forehead,

leg and foot
0.18 (±0.18) to
0.38 �C (±0.31)

1990 Ring [108] 150 Healthy Legs 0.17 (±0.16) to
0.28 �C (±0.22)

1992 BenEliyahu
[343]

70 Patients
and
healthy

Knee 0.5 �C

1999 Zhu and Xin
[158]

233 Healthy Different
ROIs

0.6–1.8 �C

2001 Niu et al. [89] 57 Healthy Different
ROIs

0.2–0.5 �C

2009 Hildebrandt and
Raschner [382]

10 Healthy Knee 0.1 �C

2012 Vardasca et al.
[383]

39 Healthy Total body 0.4 ± 0.3 �C

2014 Bouzas Marins
et al. [101]

100 Healthy
athletes

Legs <0.2 �C
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factors, such as sweating, fitness level, limb or hand dominance or
specific thermal distributions that are due to a sport specialisation.
3.2.2.4.1. Recent activity. Muscle activity is one of the principal
heat sources of the human body [64,162,328,330]. Therefore, exer-
cise is considered to be one of the strongest influences on Tsk.
Consequently, many authors recommend avoiding exercise prior
to an IRT evaluation [3,23,28,331]. However, it is difficult to find
studies that analysed the thermal effects of physical activity on
Tsk.

Physical activity and exercise appear to be one of the most
potentially promising IRT applications. Indeed, technological
advances in infrared cameras have allowed for a resurgence of
investigation in this sector, enhancing new and old applications,
such as the following:

� The quantification of training workload [168,332–334].
� The detection of anatomical and biomechanical imbalances

[335,336].
� The evaluation of fitness and performance conditions

[39,47,137,337–340].
� The detection of high temperature risk in pregnant women

[341].
� The detection of delayed onset muscle soreness (DOMS) [342].
� The prevention and monitoring of injuries

[34,48,68,144,294,343–350].
� The evaluation of efficiency level by some disciplines [351].
� The detection of the lactate threshold [36,352].
� The monitoring of the respiration rate [353].
� Clothing design and thermal comfort [83,354–360].

Studies of the thermal response following exercise have
reported both increases and decreases in Tsk immediately
following exercise. One of the primary reasons for these
contradictory results lies in the type and the duration of exercise.
Normally, increasing Tsk is related to constant and prolonged
aerobic tasks [68,361–363], whereas studies that report
decreasing Tsk primarily utilised brief intense or maximal exer-
cises [36,47,65,66,68,137,307,351,364–366].

Fernández-Cuevas [189] reported the Tsk response after three
different training methods: endurance, strength and speed train-
ing. The results were different depending on the ROI analysed,
but the most impressive outcomes were those indicating signifi-
cantly warmer Tsk in some areas of the body 8 h after exercise.
Therefore, IRT evaluations after exercise should take into account
the last physical activity.

Besides the type, duration of exercise and ROI analysed, other
important factor is the intensity. Malkinson [43] affirmed that a
bigger intensity is related with a major increase in Tsk. Other
works with bigger samples have showed the opposite: there is
indirect relationship between exercise intensity and Tsk [66,367].

We entitled this section ‘‘recent activity’’ rather than ‘‘physical
activity’’ because other types of exercise can influence Tsk, even
if they are not strictly related to sports. Thus, sexual activity should
be considered to be an influencing factor, not only due to the same
reasons as exercise but also given that – as some authors have
documented – sexual arousal, masturbation or sexual intercourse
affect Tsk in the genital areas [199,203], as well as in other ROIs,
such as the abdomen or the breast [200,202].
3.2.2.4.2. Sweating. As mentioned, in the sections in hydration and
hydrotherapy, water can influence skin emissivity and can there-
fore alter the results of IRT in humans. Sweating represents a ther-
moregulatory response to heat production by dissipating excess
heat by evaporation [368,369]. The majority of authors have
described the cooling effect of sweating on Tsk using IRT
[35,36,39,337,357,370–372], with the exception of Torii et al.
[63], who reported that this cooling effect is not due to sweating
but to vasoconstriction. However, few authors have focused on
the potential influence of sweating as a factor that influences IRT
results. Ammer [373] highlighted this influence on skin emissivity,
hypothesising that sweat acts as a filter for infrared radiation and
that sweat may have a prolonged cooling evaporation effect.

In conclusion, sweating represents a factor that affects Tsk (pri-
marily in specific situations, such as exercise). Therefore, sweating
could influence the results of IRT in humans.
3.2.2.4.3. Fitness level. As described in the section on medical his-
tory, the ideal ‘‘homeothermy’’ of each subject changes throughout
life. Individual thermal pattern changes are unique for each subject
at any given moment of their lives. Individual fitness level can also
influence the thermal pattern. Cena and Clark [374] were the first
to underline the difference in thermal emissions between trained
and undertrained subjects. More recent studies have demonstrated
differences in thermoregulation depending on the fitness and
expertise level of the subject [40,307,339,375,376]. Untrained sub-
jects exhibit a poor cooling capacity during exercise, and their
recovery is less rapid [40,339,365,377]. Moreover, Akimov and
his collaborators [36,194,338] have recently demonstrated a
relationship between the human thermal portrait and aerobic
working capacity and blood lactate levels, both of which are indi-
cators of the fitness level. Therefore, some authors have already
highlighted the potential of IRT to be used as an indicator of ath-
letic performance and fitness level [168,339]. Further investigation
is necessary to establish whether differences exist in the thermal
pattern at rest between trained and untrained subjects.
3.2.2.4.4. Dominance. Side-to-side comparisons of bilateral body
areas are commonly used to detect abnormal Tsk patterns
[53,378]. Several authors have described side-to-side Tsk asymme-
tries in healthy subjects [53,55,88,89,101,108,158] and in those
with pathologies [107,150,379–381]. In the first thermographic
studies, the normal side-to-side difference was set at 1.0 �C
[55,119]; however, as IRT has become more accurate, the normal
side-to-side asymmetry ranges have narrowed (see Table 3).

In the most recent studies, Vardasca et al. [383] determined the
overall temperature symmetry difference to be 0.25 �C ± 0.2 �C.
Likewise, Bouzas Marins and collaborators [101] showed average
Tsk differences in young soccer players to be less than 0.2 �C and
indicated that the Tsk differences happened in the dominant leg,
a result that had been previously described by Gómez Carmona
[34]. Additionally, another recent study described the application
of IRT to detect Limb Length Discrepancy (LLD), studying thermal
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asymmetries in contralateral body parts following the use of artifi-
cial imbalances (by placing a 20-mm foot support under the domi-
nant foot).

Nevertheless, other authors have suggested that side-to-side
differences in healthy subjects are nearly zero [384]. They affirmed
that limb dominance does not affect temperature asymmetry in
the patellar tendon or the wrist extensor tendon, with the observed
side-to-side differences being lower than 0.02 �C.

However, due to the very large differences in the reported Tsks
of different body areas, we suggest that further investigations be
performed to establish maximal normal asymmetries in healthy
subjects.
3.2.2.4.5. Specialisation. Similar to the above results, sport
specialisation could affect normal thermal patterns in healthy
subjects [344]. Athletes who participate in different sports have
been assessed using IRT. These studies have been performed on
athletes that participate in running [47,68,361,366], swimming
[68,385–388], tennis [389], football [34,68,101,344], handball
[39,372,390], cycling [137,351,363,367,391], rowing [344], basket-
ball [392,393], judo [394], strength training [334,395], water polo
[396], wrestling and weight lifting [344], volleyball [337],
American football [397], rugby [144,289], triathlon [68], gymnas-
tics [345,398], and skiing [68], as well as less conventional athletic
disciplines, such as Taijiquan [376].

One application of IRT in sports is for the detection of side-
to-side asymmetries in Tsk, which can be used to identify
abnormalities, prevent injuries [34,68,101] or monitor the healing
of a sports injury [346]. Knowing the specific thermal patterns of
each athlete and the pattern that is generally exhibited by partici-
pants in a particular sport aids in the proper evaluation of such
asymmetries. These studies are important given that, as certain
publications have shown, specialisation can lead to sport-specific
but ‘‘normal’’ asymmetries, such as the forearm in tennis players
[389], the tibialis anterior in football players [34], the arm in
volleyball and handball players [39,337,372], and the grasping
forearm of a judoka [394].

Asymmetries in Tsk are a frequent result of sport specialisation.
As Tauchmannova and collaborators [344] highlighted in a very
interesting study analysing 70 top sportsmen from five different
sport specialities, including weight lifting, wrestling, rowing, foot-
ball and handball, further investigations are highly recommended
in order to create a thermal pattern for each sport, as well as for
any type of work or physical activity, and even for each individual,
to aid in the appropriate interpretation of the acquired
thermograms.

3.3. Technical factors

The final group of potentially confounding factors is related to
equipment. As mentioned in the introduction, the revival of IRT
is due in great part to technological improvements in the previous
decades. Nevertheless, higher resolution, novel features (such as
3D IRT) and superior accuracy do not imply that technical factors
have less of an influence on the proper collection of human IRT
data.

3.3.1. Validity
Accurate and consistent seem to be similar adjectives, but they

are not. Accuracy is directly related to validity, and validity refers
to whether a measurement is well founded and corresponds accu-
rately to the real world. Reliability is related to consistency, and it
will be discussed in the next section.

As previously mentioned, validity refers to whether a measure-
ment is well founded and corresponds accurately to the real world.
In the case of IRT, validity would be the ability to estimate
temperatures of an object’s surface from its infrared radiation as
recorded using a thermal camera. Burnham et al. [399]
demonstrated that skin infrared thermometers have good validity
(r = 0.92), but only Sherman et al. [163] published a study of the
validation of ‘‘videothermography’’, i.e., IRT.

Several technical improvements have been made in IRT in the
previous decades, including the number of frames per second,
resolution, and the weight of the equipment.

Accuracy is directly related to the validity of IRT because it
refers to how close the thermal readings of an IRT camera are to
the true temperature. Even if the accuracy has improved, IRT-based
measurements can be more than 1 �C (or 1%) different from the
actual temperature (even in the best cameras). This is not a large
error in the evaluation of a building or in an industrial setting.
However, considering how important precision is in measuring
human temperatures (more than 0.25 �C of side-to-side asymme-
try is considered to be abnormal), poor accuracy could represent
one of the weakest points of IRT.

The validity of IRT as a diagnostic tool has been conclusively
demonstrated in the context of several pathologies and injuries,
including reflex sympathetic dystrophy [150], stress fractures
[133], psoriatic arthritis [136], complex regional pain syndrome
[381,400,401], some knee pathologies [402], pneumothorax
[403], localised scleroderma [404], dermatological pathologies
[405] and diabetes [182]. It has been also demonstrated for psy-
chophysiological applications [220]. Therefore, Faust et al. [406]
affirmed that the future of medicine is related to computer-aided
diagnosis systems, and IRT has been showed as a valid diagnostic
tool, better than its reputation. However, studies of its validity
have been performed only for specific applications [42,58].

3.3.2. Reliability
Reliability refers to the degree to which the measurement gives

the same result in repeated measurements. Likewise, repeatability
and reproducibility are sub-terms of reliability, all of them related
to consistency. In quantitative research, reliability studies aim to
prove the consistency of analytic methods or instruments, for
example, in determining if a manual analytic methodology gives
the same results independently of the observer who takes the
IRT image. Reproducibility is more related to the consistency of
results over time, obtained with a different, but similar procedure,
i.e., investigating if Tsk measurements are consistent in real time as
well as at 5 s, 24 h, or two months (see Fig. 12). Repeatability is
related to the consistency of findings obtained after the same pro-
cedure was repeated [407].

However, those concepts are often mixed in the literature, and
reliability is the most commonly used concept for describing the
consistency of Tsk measurements. There are different statistical
techniques for to investigating reliability and reproducibility. The
intra-class correlation coefficient (ICC) is the most commonly used
coefficient to describe consistency (intra and inter-examiner). In
addition to this two-way mixed model, the coefficient of variation
(CV) represents another useful coefficient to show the dispersion of
data, but is used less often in the current literature. Lastly, Bland–
Altman plots are an illustrative way to visualise the dispersion of
data with agreement limits.

IRT reliability has been examined in several studies, both with
patients [140,259,382,400,408–410] and healthy subjects
[9,164,411]. The majority of these studies achieved ICCs that
ranged between 0.4 and 0.9 (see Table 4). Other studies has also
analysed IRT reliability during exercise, indicating a poor reliability
compared to other technologies as thermistors [362,412,413].
Concerning studies without exercise, Fernández-Cuevas [414]
had one of the best results (ICC = 0.989), most likely due to the
use of computer-aided interpretation. Automation of ROI
determination improves the reliability of IRT and allows for a more
rapid and more efficient IRT analysis of human thermograms.



Fig. 12. Representation of the difference between reliable and reproducible study design.

Table 4
Reliability results (ICC) of several published articles on IRT validity.

Year Author N Sample Pathology Technique ROI ICC

1991 Plaugher et al. [415] 19 Healthy IRT Paraspinal 0.5–0.8
1999 Oerlemans et al. [380] 13 Patients Reflex Sympathetic

Dystrophy (RSD)
IRT thermometer Hands 0.94

2003 Ammer [416] 1 Healthy IRT Arm 0.48–0.87
2004 Owens et al. [58] 30 Healthy IRT scanner Paraspinal 0.92–0.97
2004 Huygen et al. [401] 31 Patients and healthy Complex Regional Pain

Syndrome type I (CRPS1)
IRT Hands 0.78–0.86

2004 Varju et al. [138] 91 Patients Hand Osteoarthritis IRT Hands 0.899
2006 Burnham et al. [399] 17 Healthy IRT thermometer Different ROIs 0.97
2006 Selfe et al. [259] 9 Patients Anterior Knee Pain IRT Knee 0.82–0.97
2007 Hart et al. [417] 30 Healthy IRT scanner Spine >0.75
2008 Spalding et al. [140] 5 Patients Wrist Arthritis IRT Wrist 0.99
2008 Zaproudina et al. [9] 16 Healthy IRT Different ROIs 0.47
2009 Gold et al. [418] 45 Patients and healthy Upper Extremity

Musculoskeletal Disorder
(UEMSD)

IRT Hands 0.46–0.85

2009 Hildebrandt and Raschner [382] 15 Patients and healthy Knee injuries IRT Knee 0.75–0.85
2010 Denoble et al. [408] 30 Patients and healthy Knee Osteoarthritis IRT Knee 0.5–0.72
2011 McCoy et al. [419] 100 Healthy IRT scanner Spine 0.95–0.97
2011 Pauling et al. [411] 15 Healthy IRT Hands 0.83–0.96
2012 Fernández-Cuevas et al. [414] 22 Healthy overweight IRT Different ROIs 0.989
2012 Costa et al. [409] 62 Patients and healthy Temporomandibular

Disorder (TMD)
IRT Face and neck 0.85–0.99

2012 Fernández-Cuevas [189] 32 Healthy IRT Different ROIs 0.68–0.99
2013 Choi et al. [400] 28 Patients Complex Regional Pain

Syndrome (CRPS)
IRT Limbs 0.865

2013 Rodrigues-Bigaton et al. [270] 30 Patients and healthy Temporomandibular
Disorder (TMD)

IRT Face 0.84–0.87

2014 Rossignoli et al. [410] 24 Patients Wheelchair users (WCUs) IRT Different ROIs 0.39–0.79
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Although the results of the Termotracker� are not perfect
(ICC = 0.999); it indicates that software solutions are faster and
more accurate for the analysis of IRT images than manual methods
[414]. Therefore, further investigations aimed at improving inter-
pretive software are clearly needed.

In terms of the reproducibility of results, some studies
[9,382,414] noted that, when tracking a single ROI over time
(e.g., monitoring an injury), muscular and central ROI measure-
ments are more reproducible (e.g., Abdominal, Back, Thigh,
Lumbar, Dorsal), and the worst ICCs were from joint ROIs (e.g.,
Knee, Ankle, Elbow). However, when examining asymmetries or
bilateral values (DT), which are actually very useful tools for
detecting pathologies [89] or injury risk [34], the most reliable
DT values are for the joints and the central ROI (i.e., the Pectoral
and Shoulder ROIs).
3.3.3. Protocol
An important way to improve IRT in humans and to minimise

the potential influence of technical factors is to use a standardised
protocol [420]. Because IRT is applied in the medical sector, several
organisations have generated and published their own protocols
and quality assurance guidelines [23,258,421].

Of the large number of academies, associations and societies,
the European Association of Thermology (EAT) has been one of
the most active in previous years in publishing IRT-related studies.
Importantly, the EAT has contributed studies by the group from the
University of Glamorgan, which has worked to better understand
the technical factors that affect IRT measurements and to
create a strict protocol for reducing errors and increasing the
accuracy and the precision of temperature measurements
[3,18,165,416,420–424]. Their work is summarised in the
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Glamorgan Protocol [424]. Also, this group gathered the primary
published outcomes regarding the technical factors that affect
IRT data collection for other protocols.

3.3.3.1. Distance. Certain authors have mentioned the importance
of the distance between the camera and the subject
[3,22,24,425]; however, the majority of studies use different
distances that depend on the measured area and the optical
characteristics of the camera.

The atmosphere transmits its own radiation between the body
and the camera. Furthermore, the atmosphere allows much of
the radiation from the body to pass through but also absorbs a
small portion of the outgoing radiation. Therefore, there is little
radiation loss from the body through the intervening atmosphere.
Radiation that is emitted by the body, as well as that reflected from
the environment, are equally affected by the atmosphere [424].
This variable is corrected by entering the distance on the IRT cam-
era (Fig. 13).

Ammer [426] performed a study to describe the influence of the
number of pixels (a measure that is related to the size of the mea-
sured area and the distance between the camera and the subject)
on the temperature that is registered by a thermal imager. This
author concluded that the results differed when the size of the
measured area differed by 100% or more, with a strong influence
of the ambient temperature.

Ivanitsky et al. [22] analysed infrared cameras that measured
3–5 lm and 8–12 lm wavelength ranges at different distances,
concluding that 3–5 lm wavelength cameras remain stable over
a distance of 1 metre, whereas 8–12 lm cameras returned
consistent results at distances of up to 2.5 m. For cases outside of
laboratory research, Chiang’s group [24] has studied the optimal
distance between the subject and imager in order to identify
patients who may have fever.

Lastly, two studies by Tkacova et al. [425,427] analysed the
importance of camera-subject distance, demonstrating a small dif-
ference of 0.2 �C between measurements that were performed at
0.2 m and 2.5 m. It has been suggested that distance is less impor-
tant than the ambient temperature for obtaining valid measure-
ments [420,425,427]; however, we recommend using a short
distance if the target of the data collection is a fixed body area,
in order to increase the number of pixels and hence the thermal
information from the area.
Fig. 13. Representation of different distances and angles for r
3.3.3.2. Background. The use of a uniform and matte background is
mentioned in certain studies [48,60] to aid in the avoidance of
reflections from other sources of light or even radiation from the
subject in the background. To our knowledge, no study has been
performed regarding the influence of different background types
and materials on human IRT recordings.

3.3.3.3. Camera position. Another factor that may influence IRT
images is the position of the camera. More than the height from
which the camera is used, the primary factor that is likely to affect
IRT recording is the angle that is subtended by the field of view of
the camera on the surface to be measured. Watmough and his col-
laborators [428] determined that the errors in surface temperature
measurements are small for viewing angles up to 90�. These results
were in accordance with those of Clark et al. [429], who reported
the importance of viewing angles on the record of IRT images.
Some years later, Ammer [416] described that small losses begin
to occur for angles of greater than 30� and that the loss of informa-
tion becomes critical for angles of 60� and may lead to inaccurate
temperature readings. Chen et al. [430] explained in their study
that the loss of information due to the angle of view is based on
Lambert’s law and could be mathematically corrected. Tkacova
et al. [425] performed an experiment to describe the importance
of distance and angle, concluding that minimal alterations occur
by modifying the angle (see Fig. 13). In addition to those studies
with humans, Westermann and collaborators [431] carried out a
study with horses to analyse the effects of infrared camera angle
and distance. They conclude that thermographically determined
temperatures were unaffected by 20-degree changes in the camera
angle or a 0.5-m increase in camera distance from the forelimb.

However, it appears that a perpendicular angle is the most
desirable option for obtaining a more accurate reading, and an
angle of more than 60� can result in a critical loss of information.
Considering the anatomical structure of the human body, new
techniques, such as 3-D infrared, may help to reduce the influence
of the angle of view [432].

3.3.4. Camera features
Currently, IRT camera features are not comparable with those of

previous decades. Among the great number of features, a subset
may be important to the reading quality and the application of
IRT on humans.
ecording IRT images (adapted from Tkacova et al. [425]).
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3.3.4.1. Temperature range. IRT cameras are able to identify tem-
peratures between a certain range of temperatures. The variety
of application fields has forced IRT camera manufacturers to
increase the range from �20 �C to 3000 �C. To our knowledge, no
study has determined the influence of using different temperature
ranges to measure the same object. Nevertheless, due to the small
temperature range of human Tsk (approximately 9�), one may pre-
sume that a wider temperature range will be less sensitive for
measuring humans [158]. We therefore suggest that an optimised
temperature range (approximately 20–50 �C) will maximise the
sensitivity of the sensor, compared with wider ranges (such as
the standard �20 �C to 120 �C in FLIR cameras), which may cause
a loss of sensitivity.

3.3.4.2. Resolution. Another interesting feature of IRT cameras is
related to their resolution. Considering that each pixel of the ther-
mogram represents one temperature datum, a larger number of
pixels (resolution) means more thermal information.

Certain studies, such as the one conducted by Ammer [426],
concluded that temperature readings are less dependent on the
number of pixels than are other influencing factors, such as room
temperature. Cameras with a 320 � 240 pixel resolution are com-
monly used in scientific works [345,425,427] and may be defined
as the minimum resolution for human use. However, the larger
the number of pixels, the better the IRT camera. In recent years,
manufacturers have been developed high-resolution cameras with
up to 1280 � 1024 pixel resolution [1]. These cameras can provide
impressive thermograms that are 12 times better that the mini-
mum recommended resolution (320 � 240).

Nevertheless, as for the case of camera distance, the quantity of
thermal information depends on the distance from the camera to
the body area analysed. Therefore, certain protocols, such as the
one from Glamorgan [424], suggest 24 different body views to
measure different areas with an appropriate position and size
(resolution).

3.3.4.3. Calibration. One of the most critical points about IRT cam-
eras performance with human applications is related to calibration.
Due to their potential error measurement (±2% or ±1% in the best
cases) and the decline in performance over more than one year,
some authors mentioned the importance of controlling the last
date of camera manufacturer calibration [421]. Other authors pre-
fer to avoid this potential error by using a constant and known
temperature source (black body) into the thermogram. They aim
to have a more accurate reference temperature in order to calibrate
the camera, or at least to know the difference between the camera
measurement and the known temperature source.

Ring and Ammer [3] assert that, despite the internal reference
temperature of many current thermal systems, using a reference
source for calibration is highly recommended to improve the
results of IRT [1,433]. We therefore suggest the use of a calibration
source when IRT is used in humans until camera providers improve
the imager’s accuracy within the 20–50 �C range.

Since this system could be both expensive and unavailable for a
regular use, Plassmann and collaborators [421] described 5 simple
procedures to monitor the correct performance of an infrared
camera, and thus to detect any changes that could inform us about
the need for maintenance and expert calibration. The tests are:
Start-up drift, Long-term drift, Offset variation over temperature
measurement range, Image non-uniformity and Thermal flooding
effects.

3.3.5. ROI selection
One of the most controversial points regarding IRT applications

in humans is the selection of the Regions of Interest (ROI). Many
IRT studies have developed their own criteria for creating and
selecting ROIs. Even though protocols, such as the one used by
the Glamorgan group [424], have used standardised ROIs, there is
a lack of consensus among researchers.

ROI selection is also a key factor when bilateral areas of the
body are compared [53,89]. Certain authors have developed
procedures, such as external markers, to improve ROI selection
[48,290,382,408,434–436]. Others, however, such as Ferreira
et al. [64] decided to avoid any markers around the ROI to avoid
temperature changes that may have been due to conduction. In
some diagnosis applications, computer simulation and
segmentation has been used to improve the ROI selection
[178,437,438].

The controversy around of ROI selection is based on the manual
procedure that is required to create ROIs. As for reliability, we
observed that the ICC results (intra- and inter-examiner
Correlation Coefficient ICC) were often suboptimal, due to factors
that depended on the ability of the observer to manually select
the ROI [3,9]. To improve reliability and to open up the possibility
of comparing IRT results among studies, we suggest the
development of automatic and objective procedures to select the
ROI. In this sense, software solutions with automatic ROI selection
features would be a first step, such as the ones proposed from the
research group of the Technical University of Madrid [414], the
Loughborough University [439], the University of Porto
[349,350], the Polytechnic Institute of Leiria [440] or the Federal
University of Minas Gerais [348].

3.3.6. Software
As some authors showed, there are different methods, algo-

rithms and software to obtain the final temperature data from a
thermal image [4,6,35,100,348,439–448].

Plassmann et al. [421] described a battery of calibration tests
using four different thermal imaging cameras. They obtained dif-
ferent thermal results measuring the same object. That could be
explained by calibration drifts, but also by different image process-
ing algorithms. Therefore, it is important to know the measure-
ment software used, and also the image processing methods and
thermal image formats, because they could influence the thermal
results.

Vardasca and collaborators [449] have recently described the
characteristics of the majority of IRT analysis software in the
market. Some of them use different procedures to extract the ther-
mal data, and most of them, as the IRT cameras, were not designed
for being used specifically with humans. Despite some projects in
the previous years [441,450–452] bigger efforts should be made
by manufacturers, researchers and health professional to define a
common modality of medical thermal imaging, as DICOM standard
[453]. Based on a consensus, future IRT software and cameras
should be designed specifically for the application on humans, with
standard processing methods that will make easier the use of IRT
regardless of the manufacturer or software used. In addition, it will
enforce the credibility of IRT and the spread of its used on human
applications.

3.3.7. Statistical analysis
Finally, another important factor that is generally ignored is

based on the analysis of the IRT data. The aim of this section is
not to examine the possible statistical analyses that can be per-
formed on IRT data, which depends on the design of the study
and the criteria of each researcher, but to evaluate the influence
of the use of different measurement units or strategies to present
the IRT results.

The majority of authors have used averaged ROI temperatures
to express their results. This is logical given that these values
represent the mean temperature of each ROI. However, average
values may occasionally have errors given that the body areas
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are traced manually. When ROIs are manually selected, they can
include certain pixels from the background or from the borders
of the ROI, which may exhibit lower temperature values. Thus,
the average temperature of the ROI would be lower than the actual
value. In these cases, the use of maximal temperatures may be a
solution.

In this sense, a recent study of Ludwing and his collaborators
[387] presented a critical comparison between the methods mainly
used in the literature, i.e., average and maximal temperature. They
found a high correlation between both methods, concluding that
they can equally represent temperature trends in cutaneous
thermo-graphic analyses. Nevertheless, other authors continue to
use both methods to better illustrate skin thermal behaviours [60].

Other authors, such as Vainer [371], have used histograms to
represent the data distribution and to detect possible errors.
Deng and Liu [35] proposed a mathematical modelling of IRT that
was based on statistical principles. The majority of the standardisa-
tion efforts [416,421,424] are based on reducing the influence of
the improper analysis of IRT data. Future efforts may be directed
to normalise thermal results by correcting for the influence of
these factors, making the use of IRT on humans a more objective
process and allowing for the comparison of different subjects (or
the same subject over time) independently of environmental,
individual and technical factors.

4. Conclusions

The number of the factors that affect the skin temperature (Tsk)
in humans is tremendously large. The infeasibility of controlling for
all of these factors could be considered one of the weakest points of
infrared thermography (IRT). Therefore, this review proposes a
comprehensive classification of all those factors in three primary
groups: environmental, individual and technical factors.

The potential and increasing interest in the new applications of
IRT on humans require an effort: firstly, to further investigate and
determinate the unspecified influence of most of the factors on
skin temperature; and secondly, to improve this classification with
new references and factors.

It is almost impossible to control for all the factors, but only by
going deeper in the knowledge of them could help us to avoid their
influence or, at least, to know how important they are and to
assure a correct use of IRT.
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